Defining a local arterial input function for perfusion MRI using independent component analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defining a local arterial input function for perfusion MRI using independent component analysis.

Quantification of cerebral blood flow (CBF) using dynamic-susceptibility contrast MRI relies on the deconvolution of the arterial input function (AIF), which is commonly estimated from the signal changes in a major artery. However, it has been shown that the presence of bolus delay/dispersion between the artery and the tissue of interest can be a significant source of error. These effects could...

متن کامل

Automated Determination of Arterial Input Function for Dynamic Susceptibility Contrast MRI from Regions around Arteries Using Independent Component Analysis

Purpose. Quantitative cerebral blood flow (CBF) measurement using dynamic susceptibility contrast- (DSC-) MRI requires accurate estimation of the arterial input function (AIF). The present work utilized the independent component analysis (ICA) method to determine the AIF in the regions adjacent to the middle cerebral artery (MCA) by the alleviated confounding of partial volume effect. Materials...

متن کامل

Quantitative myocardial perfusion imaging using a step arterial-input function

Background Modern MRI myocardial perfusion protocols use rapid venous bolus injections, typically 3-5 ml/s of 5-15 ml of agent over a few seconds. The resulting arterial input functions are rapidly varying with high agent concentrations (Fig. 1A and 1B) and thus typically require high temporal resolution acquisitions (~1 sec), custom pulse sequences and complex processing methods for perfusion ...

متن کامل

Input variable selection using independent component analysis

The problem of input variable selection is well known in the task of modeling real world data. In this paper, we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches w...

متن کامل

Automatic denoising using local independent component analysis

We present a denoising algorithm for enhancing noisy signals based on local independent component analysis (ICA). We extend a noise reduction algorithm proposed by Vetter et al. [11] by using ICA to separate the signal from the noise. This is done by applying ICA to the signal in localized delayed coordinates. The components resembling noise are detected using estimators of kurtosis or the vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Magnetic Resonance in Medicine

سال: 2004

ISSN: 0740-3194

DOI: 10.1002/mrm.20227